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Truncated Parabolic-Index Fiber with
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Abstract—The use of a parabolic-index fiber as an optical trans-
mission line has been receiving extensive attention because of its
excellent mode dispersion characteristics.

In the present paper, the modal dispersion in the optical fiber with
truncated parabolic index distribution is analyzed theoretically in
detail by using a variational method. Taking the influence of the
cladding upon the propagating modes into consideration, it is found
that there exists an optimum index distribution for which the modal
dispersion is minimized. The standard deviation of the normalized
group delay of propagating modes is used to estimate the medal
dispersion behavior of the fiber.

I. INTRODUCTION

ODAL DISPERSION in multimode optical fibers is

caused by the differences of group velocities of each
propagating mode. The modal dispersion broadens the
output pulsewidth which in turn restricts the optical data
transmission capabilities. It has been pointed out, experi-
mentally and theoretically, that optical fibers with
parabolic-index distribution show little modal dispersion in
comparison with other optical waveguides [1], [2].

The parabolic-index fiber consists of a core with
parabolic-index distribution surrounded by a cladding of
constant refractive index. The influence of the cladding upon
the lower order modes is negligible because their energies
are trapped tightly into the core. However, the higher order
modes are affected significantly by the cladding because a
considerable portion of their energies propagates in the
cladding [3]. Therefore, we must take the influence of the
cladding upon the propagating modes into account to
discuss the mode dispersion characteristics of the multi-
mode truncated parabolic-index fiber. To the authors’
knowledge, however, the detailed analysis of the mode
dispersion characteristics including the effect of the cladding
has not yet been reported.

In this paper, the mode dispersion characteristics of the
truncated parabolic-index fiber are analyzed theoretically in
detail by using a variational method [4], [5], and the
optimum index distribution to achieve the minimum modal
dispersion is found. To estimate the modal dispersion
behavior of the fiber, the standard deviation of normalized
group delay of the propagating modes is used. This standard
deviation gives the output pulsewidth broadening due to the
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Fig. 1. Refractive-index distribution of truncated parabolic-index fiber

and circular-cylindrical coordinates used in the analysis.

modal dispersion provided that the mode conversion effects
are small.

I1. REFRACTIVE-INDEX DISTRIBUTION AND
PROPAGATING MODES

The fiber under consideration is assumed to be uniform in
both the circumferential direction f and the propagation
direction z. As shown in Fig,. 1, the refractive-index distribu-
tion 1n the radial direction r is assumed to be

[n1(r) = no[1 — ar®]''2,

ln2=

r<R

n(r) - r>R

(1)
where R is the radius of the core, and ng is the refractive
index at the axis (r=0) of the fiber. The parameter
determines the rate of change of the refractive-index varia-
tion, and is expressed as

a=[1— (ng/no)*}/R? (2)

where ny is the refractive index of the core at the boundary
between core and cladding (» = R). As the electromagnetic
fields of the waves are almost TEM. the wave equation can
be expressed approximately by the following scalar wave
equation [6];

V20 + k*n*(r)@ =0 3)
where @ is the transverse electric (or magnetic)field, and k is
the wavenumber in free space.

Assuming that the direction of propagation is along the z
axis and B is the propagation constant, the field ® can be
expressed as

®(r.0,2) = ¢(r.6) - exp [~ jpz] “)

in which the harmonic time dependence exp [jwt]is omitted
for brevity. Substituting (4) into (3), we get

V¢ + [k*n*(r) - B*]¢ = O. (%)
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The variational expression for the propagation constant can
be derived from (5) in the form [7]

fs [K*n*(r)¢® — (Vo)*] dS
j‘s ¢2 dS * (6)

The surface integralin (6) must be carried out over the whole
transverse surface and the trial function ¢ in the same
equation must be continuous across the entire surface of
integration.

Since most of the power of the modes is concentrated in
the fiber core with parabolic-index profile, let us represent
the trial function ¢ in (6) in terms of the Gauss-Laguerre

function as follows:
</ 2m!

d)lmr 0; b) \/81—7{ \/l—}-m)'

A sl o

where { and ¢, are expressed as

{ = 1/y/kno\/b (8)
_{2, =0
g = 1,

140 )
respectively. Li,(x)in (7)is a Laguerre polynomial defined by
Li(x)=

In (7) and (10), land m are zero or positive integers which are
used to label the propagating modes. and the parameter b is
determined by the stationary condition of the variational
expression.

Substituting (7) into (6), we get the variational expression
for the propagation constant of the (I,m) mode. The result is

p=

%_ (cos (16))

sin (16),

and

x7!exp [x] 4"

P e exp [—x))

(10)

Bin(b) = Bra(b) + K2n}
[ oW b (1)
where
B2.(b) = k*nd — 22m + | + 1)/¢? (12)
o b= ap?, r<R

S b)= \(2/no)? — (1 — br2), r>R (13)

2m! 1 (i

Vinlrs b) = 4/(l+m)!. < Lm(Cz)
(—2) - exp [_ZI_CZJ (14)

It should be noted that, for the mode [ 5 0, there exists a
double degeneracy due to the two possible choices for the
circular functions, [cos (I6), sin (10)]. Furthermore, for all
modes, there exists an additional double degeneracy due to
the scalar approximation. Therefore, the number of the
propagating modes is twice the number of modes obtained
from the scalar approximation.

The value of the parameter b which satisfies the stationary
property is obtained from the condition;

dB(b)db = 0. (15)
Substituting the solution b, of (15) into (11), we get
Finlbo) = Binlbo) +Kn3 | 1 (ribolbulribolr dr (16)

Y

which satisfies the stationarity condition. In the following
discussion, the letter b, will be omitted for simplicity since
we treat only the solutions which satisfy the stationarity
condition. so that f1,(bo) and f(r:bo), for example, will
simply be expressed hereafter as 3, and f(r), respectively.
The propagation constant of the (Lm) mode given by (16)
must also satisfy the following condition:

2> (kny)? (17)
ITI. MoDAL DispERSION
The delay time 1,, of the pulse of the (Im) mode after
propagation along the fiber of length L is given by

. _ L dkny dp,,
m = Tk dkng

(18)

where ¢ is the velocity of light in free space. Neglecting
material dispersion, (18) can be written as

T = L dﬁlm
m= dkno

Because the delay times 1, for each mode are different, the
input pulsewidth is broadened after propagation along the
multimode fiber. To estimate the output pulsewidth for
practical applications, let us introduce the standard devia-
tion S of the normalized group delay of all propagating
modes, defined by

2\ 1/2
} ) (20)

1
5= (M 2
where M is the total number of propagating modes, and )’
denotes the sum over all propagating modes. The standard
deviation S is related directly to the output pulse shape. The
width At over which the magnitude of the output pulse
shape decays by a factor of 1/e is given approximately by

(19)

dﬁlm _ [i
dkn, M

dﬁl’m’
I'm’ dknO

Mr=3"ns. @1)
As we can see from the foregoing equation, the output
pulsewidth is proportional to the standard deviation S.
More precisely, the output pulsewidth is much more
broadened than the input pulsewidth if the values of 1.,
disperse widely, whereas the input pulse retains almost its
initial shape during its propagation along the fiber if the
values of 7;, are concentrated in a narrow range. In defining
the standard deviation S given by (20)it is assumed that all
propagating modes are uniformly excited at the sending end
of the fiber. In the case of a nonuniform excitation, the
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standard deviation of each group delay must be mulitiplied
by an adequate weighting function. dg,, /dkn, in (20) can be
obtained from (11) as

dkny 2B, dkn,
(1 - %Alm + %(2Blm + Clm))

B (1 — Ay, + By,)'? 22)
where
Ay =20@m + 1+ 1)\/%/"”0
Bu= JOWR) dr
0
d o0
Con= koo | S Winlr)r (23)

The standard deviation S can easily be calculated by using
(22).

IV. NUMERICAL EXAMPLES AND DISCUSSIONS

Let us introduce the normalized frequency

w, = kR /% — n3 (24)
to treat the mode dispersion characteristics of various
truncated parabolic-index fibers, where 7, is an equivalent
refractive index of the core defined as
2 R
i =n3+ =2 [ [n2(r) — n3)r dr.

0

(25)

The integral in the above equation must be carried out over
the region of the core n*(r) > n?.

The ncrmalized frequency w, is closely related to the
number of the propagating modes. The propagation con-
stants of the modes which have identical value of 2m + [)
are almost the same. Therefore, from (16) and (24), the
normalized cutoff frequency of the mode group of order
N = (2m -+ l) is given approximately by

w, = /2 (N +1). (26)
Furthermore, the total number M of the propagating modes
in a fiber which supports modes up to the Nth mode group s

M= (N + 1)(N +2). (27)

Figs. 2 and 3 show numerical examples of the frequency
characteristics of df,, /dkn, for several lower (0,m) modes,
where the values of ng/n, are (1.0, 0.997, 0.995) and (1.0,
1.003, 1.005), respectively, and 71, /n, is equal to 1.01. As we
can see from both figures, the values of dp,, /dkn, depart
from unity rapidly near the cutoff frequencies. Therefore, it is
predicted that the mode dispersion characteristics would be
affected (i.e., the pulsewidth is broadened) significantly by
the propagating modes near cutoff. As shown in Fig. 2, in the
case of ng/n, < 1, the values of df,,, /dkn, approach unity
monotonically with increasing w,. In the case of ng/n, > 1,
on the other hand, the convergence of df,,/dkn, to unity
is much slower as the value of ng/n, increases as shown in
Fig. 3. :
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Fig. 2. Group delay dp,,/dkn, versus normalized frequency w, with
ng/n, <1 as a parameter.
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Fig. 3. Group delay df,,/dkn, versus normalized frequency w, with
ng/n, =1 as a parameter.
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Fig. 4. Normalized modal dispersion S/(7, /n, — 1) versus normalized
frequency w, with n,/n, <1 as a parameter.

The frequency characteristic of the normalized standard
deviation S/[(7, /n,) — 1] given by (20) are shown in Figs. 4
and 5, where the values of np/n, are assumed to be (1.0,
0.997, 0.995) and (1.0, 1.003, 1.005), respectively. In both
figures, it is found that the standard. deviation S varies
abruptly and almost periodically. This feature is caused by
the fact that new modes begin to propagate with increasing
w,. This means that the output pulsewidth is significantly
affected by the mode group near cutoff.
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Fig. 5. Normalized modal dispersion /(7 /n, — 1) versus normalized
frequency w, with ng/n, =1 as a parameter.
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Fig. 6. Normalized modal dispersion S/(#,/n, — 1) versus normalized
frequency w, for the values of ng/n, = 1.003 and ng /n, = 0.995.

When the new mode group of order (N + 1) begins to
propagate, the number of the propagating modes increases
by 2(N + 1). This is about 2/N times the totalnumber of the
propagating modes. Therefore, the influence on pulse
broadening of the mode group near cutoff may be expected
to decrease in general with the increase of N or w,. This is
illustrated for a typical case with ng/n, < 1in Fig. 4, that is
to say, the peak values of S/[(7,/n,) — 1] at the cutoff
decrease monotonically for increasing w, when ng/n, < 1.

However, when ng/n, > 1, these peak values do not
always decrease continuously for increasing w, but have a
minimum at a value of w, which depends on the value of
ng/n,,as wecansee from Fig. 5. Thisis due to the fact that, in
the case of ng/n, > 1, the values of df,,/dkn, do not
approach to unity monotonically and rapidly as mentioned
previously in connection with Fig, 3. Furthermore it is found
from Fig. 5 that S assumes a minimum for a particular value
of w,. By contrast, in the caseng/n, < 1,5 does not assume a
minimum value.

Two typical examples of the frequency dependence of the
standard deviation S are shown in Fig. 6 where the values of
ng/hy are assumed to be 0.995 and 1.003. The standard
deviation S for the fiber with ng/n, < 1is smaller than that
for the fiber with ng/n, >1 at higher frequencies [3],
whereas in the lower frequency region (w, < 10 in our
example), the situation is reversed. This means that a fiber

0.1

0.0 1 L |

Ng/ N,

Fig. 7. Normalized modal dispersion S/(#,/n, — 1) versus ng/n, with
normalized frequency w, as a parameter.

with an appropriate value of ng /n, which is larger than unity
can achieve better mode dispersion characteristics than a
fiber whose value of ng/n, is less than unity.

The relation between the standard deviation S and ng/n,
is shown in Fig. 7 with the normalized frequency w, as a
parameter. The figure shows that, in the region ng /n, > 1, S
takes a minimum value for a particular value of ng/n,,
whereas, in the region of ng/n, < 1, S decreases monoton-
ically as ng/n, decreases. However, for ng/n, values less
than 0.995, S is almost constant and hence the mode
dispersion characteristics are almost the same. Further-
more, as we can sce from Fig. 7, the modal dispersion of
fibers with ng/n, > 1 for which S assumes a minimum is
almost the same as that of fibers with ng/n, ~ 0.995.

Since the rate of change of the refractive index in the core
becomes larger for smaller values of ng /n,, the energies of
the propagating modes of a fiber withng/n, < laretrapped
more tightly than in fibers with ng/n, > 1. This makes it
more difficult to connect fibers to each other. Therefore,
from the practical point of view, fibers with ng/n, greater
than unity seem to be more desirable than fibers with
ng/n, ~0.995 provided that the value of ng/ny(>1) is
chosen to minimize the modal dispersion. In addition, for
improving the mode dispersion characteristics it is impor-
tant that the fiber be operated at a frequency far from the
cutoff of any mode groups.

V. CONCLUSION

The mode dispersion characteristics of the truncated
parabolic-index fiber have been analyzed theoretically in
detail by using a variational method. The standard deviation
of the normalized group delay of the propagating modes has
been used to estimate the modal dispersion behavior of the
fiber. As a result, it has been shown that there exists an
optimum index distribution of the truncated parabolic-
index fiber at which the modal dispersion is minimized, and
a minimum output pulsewidth broadening can be achieved.

In this paper, it has been assumed that fibers are free from
losses. In a practical situation, however, the higher order
modes near cutoff may be expected to suffer much more
attenuation due to cladding and bending losses. Therefore,
provided that the losses are taken into account, the influence



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL MTT-26, NO. 2, FEBRUARY 1978

of these modes on the pulse broadening would be reduced to
some extent.
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Analysis of the Microstrip and the
Electrooptic Light Modulator

MASANORI KOBAYASHI

Abstract—Green’s function for examples with anisotropic media
is obtained using the image-coefficient method. The method is based
on the boundary conditions and the reciprocity relation. Using this
Green’s function and solving directly the charge distribution on the
strip, the line capacitances per unit length of a microstrip and of an
electrooptic light modulator are obtained. High accuracy of this
method is demonstrated by comparing the present results with the
results obtained using the conformal mapping and with other data
appeared in the literatare. The charge distributions are also il-
lustrated. Of particular interest is the effective filling fraction of the
dielectric material, which depends mainly on the shape ratio and only
slightly on the relative dielectric constant. The effective filling
fractions are tabulated for the microstrip with a homogeneous
dielectric substrate.

LiST OF SYMBOLS

€0 Permittivity of free space (vacuum).
g Permittivity tensor of anisotropic material.
¥, &f Relative dielectric constants of anisotropic

material in the directions of x-axis and
y-axis, respectively.

g* Relative dielectric constant of isotropic
material.
Cle . . . .
el = Ji Effective relative dielectric constant.
C0,/80
e =1 Gheelers effective filling fract
=" 7 eeler’s effective g fraction.
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C Capacitance per unit length of microstrip
or of electrooptic light modulator.

Co Capacitance per unit length of line without
dielectric.

q Line charge.

g Charge distribution on the conductor.

m Number dividing the conductor.

Y Constant of 1, 2, or 3.

N Truncated number of the infinite series in
Green’s function.

/Eﬂf— — et e, . .
K =Y 2l 171 image coefficient.

NCC RN
Electric flux per unit angle emitted from the

source line charge g in the radial direction
with the angle 6 from the x-axis.

ol = 0‘2/0‘1(051 =+ 3*1y/3*1x Oy =/ 5*2y/8*2x~
Z.= /I /&

(g, & & 0)

Intrinsic impedance of the free space
(vacuum).

I. INTRODUCTION

HE CALCULATION of the parameters of a micro-
Tstrip line based on a TEM approximation is useful for
the design of microwave integrated circuit structures
[1]-[8] The parameters can be derived from the line capaci-
tance. The method in [1] is based on modified conformal
mapping. The methods in [2], [3], [S]-[8] use Green’s func-
tion satisfying the boundary conditions. The method in [4]
is based on the relaxation technique. Isotropic substrate
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