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Abstract—The use of a parabolic-index fiber as an optical trans-

mission line has been receiving’ extensive attention because of its

excellent mode dispersion characteristics.

In the present paper, the modal dispersion in the optical fiber with
truncated parabolic index distribution is analyzed theoretically in

detail by using a variational method. Taking the influence of the
cladding upon the propagating modes into consideration, it is found
that there exists an optimum index distribution for which the modal
dispersion is minimized. The standard deviation of the normalized
group delay of propagating modes is used to estimate the modal
dispersion behavior of the fiber.

1, INTRODUCTION

M

OIDAL ~ISPERSION in multimode optical fibers is

caused by the differences of group velocities of each

propagating mode. The modal dispersion broadens the

output pulsewidth which in turn restricts the optical data

transmission capabilities. It has been pointed out, experi-

mentally and theoretically, that optical fibers with

parabolic-index distribution show little modal dispersion in

comparison with other optical waveguides [1], [2].

The parabolic-index fiber consists of a core with

parabolic-index distribution surrounded by a cladding of

constant refractive index. The influence of the cladding upon

the lower order modes is negligible because their ener~es

are trapped tightly into the core. However, the higher order

modes are affected significantly by the cladding because a

considerable portion of their energies propagates in the

cladding [3]. Therefore, we must take the influence of the

cladding upon the propagating modes into account to

discuss the mode dispersion characteristics of the multi-

mode truncated parabolic-index fiber. To the authors’

knowledge, however, the detailed analysis of the mode

dispersion characteristics including the effect of the cladding

has not yet been reported.

In this paper, the mode dispersion, characteristics of the

truncated parabolic-index fiber are analyzed theoretically in

detail by using a variational method [4], [5], and the

optimum index distribution to achieve the minimum modal

dispersion is found. To estimate the modal dispersion

behavior of the fiber, the standard deviation of normalized

group dei!ay of the propagating modes is used. This standard

deviation gives the output pulsewidth broadening due to the
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Fig. 1. Refractive-index distribution of truncated parabolic-index fiber
and circular-cylindrical coordinates used in the analysis.

modal dispersion provided that the mode conversion effects

are small.

H. REFRACTIVE-INDEX DBTRIBUTION AND

PROPAGATING MODES

The fiber under consideration is assumed to be uniform in

both the circumferential direction f3 and the propagation

direction z. As shown in Fig. 1, the refractive-index distribu-

tion in the radial direction r is assumed to be

~(,)= /,11(,)= no[l - a,’]’”, ,< R

\n2, r>R
(1)

where R is the radius of the core, and Ho is the refractive

index at the axis (r = 0] of the fiber. The parameter a

determines the rate of change of the refractive-index varia-

tion, and is expressed as

a = [1 – (nR/no)2]/R2 (2)

where n~ is the refractive index of the core at the boundary

between core and cladding (r = R). As the electromagnetic

fields of the waves are almost T13M. the wave equation can

be expressed approximately by the following scalar wave

equation [6];

V’@ + k2n2(r)@ = O (3)

where @is the transverse electric (or magnetic) field, and k is

the wavenumber in free space.

Assuming that the direction of propagation is along the z

axis and /3 is the propagation constant, the field @ can be

expressed as

@(r”,6,z) = fj(r,O) ~exp [ -j~z] (4)

in which the harmonic time dependence exp [jut] is omitted

for brevity. Substituting (4) into (3), we get

V2r#r + [kznz(r) – flz]rj = O. (5)
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The variational expression for the propagation constant can

be derived from (5) in the form [7]

(6)

The surface integral in (6) must be carried out over the whole

transverse surface and the trial function ~ in the same

equation must be continuous across the entire surface of

integration.

Since most of the power of the modes is concentrated in

the fiber core with parabolic-index profile, let us represent

the trial function @ in (6) in terms of the Gauss–Laguerre

function as follows:

m
““(”“b)=J+”m ~(1

,~.Cos (M)

sin (10),

where ( and q are expressed as

c = l/~knO~ (8)
and

{

2. 1=0
&l =

1, 1+0
(9)

respectively. l,;(x) in (7) is a Laguerre polynomial defined by

Lh(x)==z’ ‘Xp‘x’”~ .‘+1 o
dxm ‘x exp [– x]). (lo)

m!

In (7) and (10),1 and m are zero or positive integers which are

used to label the propagating modes. and the parameter b is

determined by the stationary condition of the variational

expression.

Substituting (7) into (6), we get the variational expression

for the propagation constant of the (l,m) mode. The result is

where

t%(b) = k% – 2(2nz + 1 + 1)/L’ (12)

(14)

It should be noted that, for the mode 1# O, there exists a

double degeneracy due to the two possible choices for the

circular functions, [COS (16), sin (16)]. Furthermore, for all

modes, there exists an additional double degeneracy due to

the scalar approximation. Therefore, the number of the

propagating modes is twice the number of modes obtained

from the scalar approximation.

The value of the parameter b which satisfies the stationary

property is obtained from the condition;

dfifJb)/db = O. (15)

Substituting the solution b. of (15) into (11), we get

i%t(bo) = ]k(h) + k’n~ i‘ ‘f(r;bo)~~~(r;bo)r dr (16)
‘0

which satisfies the stationarity condition. In the following

discussion, the letter b. will be omitted for simplicity since

we treat only the solutions which satisfy the stationarity

condition. so that fl~w(bo) and f(r;bo), for example, will

simply be expressed hereafter as fl~~ and ~ (r), respectively.

The propagation constant of the (l,m) mode given by (16)

must also satisfy the following condition:

fl~~ > (kn,)’. (17)

III. NIIODAL DISPERSION

The delay time rlm of the pulse of the (l,nt) mode after

propagation along the fiber of length L is given by

L dkno. dfil~
Tim=;.

dk dkno
(18)

where c is the velocity of light in free space. Neglecting

material dispersion, (18) can be written as

(19)

Because the delay times Tlm for each mode are different, the

input pulsewidth is broadened after propagation along the

multimode fiber. To estimate the output pulsewidth for

practical applications, let us introduce the standard devia-

tion S of the normalized group delay of all propagating

modes, defined by

where M is the total number of propagating modes, and ~

denotes the sum over all propagating modes. The standard

deviation S is related directly to the output pulse shape. The

width AT over which the magnitude of the output pulse

shape decays by a factor of I/e is given approximately by

Az= 3~. noS. (21)
c

As we can see from the foregoing equation, the output

pulsewidth is proportional to the standard deviation S.

More precisely, the output pulsewidth is much more

broadened than the input pulsewidth if the values of rlm

disperse widely, whereas the input pulse retains almost its

initial shape during its propagation along the fiber if the

values of ~[~ are concentrated in a narrow range. In defining

the standard deviation S given by (20) it is assumed that all

propagating modes are uniformly excited at the sending end

of the fiber. In the case of a nonuniform excitation, the
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standard deviation ofeachgroup delay must be multiplied 1.001
nR)nz. l o —

by an adequate weighting function. d~l~/dknO in (20) can be

obtained from (11 ) as “’”2=0’’7” -”--: <Y;:nQin2. 0995 —-—

dim 1 dflf~ ,.$g 1.0
/_. ,/ . ..<. :-=

dkno = 2~1~” dkno

- ~[~ ‘-1

‘ /, //.”””” ~, --
Q G ,’

[~ //

_ (1 - +~lm + *(2% + Clm)) (0,0)’ ‘

(22)
,01, J // j:

(1 - A,m + B,m)” 1 ___
~ (..2)’/ ‘: (0.3)

o.999_ J

where
0 10 20

rd.

Alm = 2(2m + 1 + l)~/kno Fig, 2. Group delay dfltn, /dknO versus normalized frequency con with

%=!mf(r)v%(r)rdv
o

(23)

The stanclard deviation S can easily be calculated by using

(22).

IV NUMERICAL EXAMPLES AND DISCUSSIONS

Let us introduce the normalized frequency

to treat the mode dispersion characteristics of various

truncated parabolic-index fibers, where fil is an equivalent

refractive index of the core defined as

n~ /nz < 1 as a parameter

1.002
nR/n2=t. o —
nRjrrz=l 003 --------

nR/n2=l 005 —-—.

~’>

I ‘

rd.

@= d +$ JR[~’(~)- Wrd~
Fig. 3., Group delay d~f~/dknO versus normalized frequency (D. with

(25) nR/n2 > 1 as a parameter.

o

The integral in the above equation must be carried out over 0.3

the region of the core n’(r) > n;.
rkln2=l o ———

The normalized frequency On is closely related to the
nR/n2.0 997 --------

number of the propagating modes. The propagation con-

‘ * ( kk (tk

nR/n2.0 995 —-—

*::

stants of the modes which have identical value of (2M + 1) 0.2

are almost the same. Therefore, from (16) and (24), the -

normalized cutoff frequency of the mode group of order u-l c“

AJ = (2M + 1) is given approximately by \ ),
1c-

\

II
0.1 !~,

on= JZ(N+ l). (26) \“ ~’, ~,, ,,
‘!

Furthermore, the total number M of the propagating modes
\’ ;y’,

; T ~“
,,

?.
\

:‘,, ,~.,

in a fiber which supports modes up to the iVth mode group is
,k > 1\’.~,% ‘Q.b ~<”. :\”..:<4 ‘%.:<: <... +. ‘N:<.:.

~.

0.0
‘k,”-.

.—+ -a+ _. .<
—..

M= (N+ 1)(N + 2). (27) 5 10 15
.,

Figs, 2 and 3 show numerical examples of the frequency

characteristics of d~l~/dkno for several lower (O,rn) modes,

where the values of nR /n2 are (1.0, 0.997, 0.995) and (1.0,

1.003, 1.005), respectively, and ml /n2 is equal to 1.01. As we

can see from both figures, the values of dfll~ /dkno depart
from unity rapidly near the cutoff frequencies, Therefore, it is

predicted that the mode dispersion characteristics would be

affected (i.e., the pulsewidth is broadened) significantly by

the propagating modes near cutoff. As shown in Fig. 2, in the

case of n~ /n2 < 1, the values of dfll~/dkrro approach unity

monotonically with increasing O.. In the case of n~/n2 > 1,

on the other hand, the convergence of d~lJdkno to unity

is much slower as the value of nR/nz increases as shown in

Fig. 3.

rJ”

Fig. 4. Normalized modal dispersion S/(771/n2 – 1) versus normalized
frequency w. with n~ /n2 <1 as a parameter,

The frequency characteristic of the normalized standard

deviation S/[(iTl /n2 ) – 1] given by (20) are shown in Figs. 4

and 5, where the values of n R/n2 are assumed to be (1.0,
0.997, 0.995) and (1.0, 1.003, 1.005), respectively. In both

figures, it is found that the standard deviation S varies

abruptly and almost periodically. This feature is caused by

the fact that new modes begin to propagate with increasing

CU..This means that the output pulsewidth is significantly

affected by the mode group near cutoff.
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5 10 15

rd.

Fig. 5. Normalized modal dispersion S/(fil /nz – 1) versus normalized

frequency O. with n~/nz >1 as a parameter.

0.2

n~ln~.1 003 —

nR/n2=o.gg5 --------

w“

Fig. 6. Normalized modal dispersion ,S/(Z ~/n, – 1) versus normalized

frequency o+ for the values of nR/n2 = 1.003 and n~/n, = 0.995.

When the new mode group of order (N + 1) begins to

propagate, the number of the propagating modes increases

by 2(N + 1). ‘This is about 2/N times the total number of the

propagating modes. Therefore, the influence on pulse

broadening of the mode group near cutoff maybe expected

to decrease in general with the increase of N or m.. This is

illustrated for a typical case with nR/n z < 1 in Fig, 4, that is

to say, the peak values of S/[(El /n ~) – 1] at the cutoff

decrease monotonically for increasing OH when nR/n~ e 1,

However, when nj?/nz >1, these peak values do not

always decrease continuously for increasing conbut have a

minimum at a value of co. which depends on the value of
n~ /nz, as we can see from Fig. 5. This is due to the fact that, in

the ~ase of nR/?r z > 1, the values of d~l~/dkno do not

approach to unity monotonically and rapidly as mentioned

previously in connection with Fig. 3. Furthermore it is found

from Fig. 5 that S assumes a minimum for a particular value

of ro.. By contrast, in thecasen R/n2 < 1, S does not assume a

minimum value.

Two typical examples of the frequency dependence of the
standard deviation S are shown in Fig. 6 where the values of

nR /nz are assumed to be 0.995 and 1.003. The standard

deviation S for the fiber with nR/nz <1 is smaller than that
for the fiber with nR /n, >1 at higher frequencies [3],

whereas in the lower frequency region (co. < 10 in our

example), the situation is reversed. This means that a fiber

0.1
Qn. 13.5

Qn.lo 5 . . ------

Wn= 7.5 —-—

I

rA :
\ 0.05 -

Ic

—-
.,

... . .
--------

0.0 I
0.995 1.0 1.005

‘R/n2

Fig. 7, Normalized modal dispersion S/(ii ~/nj – 1) versus n,/n2 with

normalized frequency co. as a parameter,

with an appropriate value of nR/n z which is larger than unity

can achieve better mode dispersion characteristics than a

fiber whose value of nR/n~ is less than unity.

The relation between the standard deviation S and nR/n~

is shown in Fig. 7 with the normalized frequency O. as a

parameter. The figure shows that, in the region nR /n2 >1, S

takes a minimum value for a particular value of nR/nz,

whereas, in the region of n~/rr z < 1, S decreases monoton-

ically as nR/nz decreases. However, for nR/n ~ values less

than 0.995, S is almost constant and hence the mode

dispersion characteristics are almost the same. Further-

more, as we can see from Fig. 7, the modal dispersion of

fibers with nR/n2 >1 for which S assumes a minimum is

almost the same as that of fibers with nR/n2 & 0.995.

Since the rate of change of the refractive index in the core

becomes larger fOr Smaller VahJeS Of nR /nz, the energieS Of

the propagating modes of a fiber with nJr/n z <1 are trapped

more tightly than in fibers with nR/nz > 1, This makes it

more difficult to connect fibers to each other. Therefore,

from the practical point of view, fibers with nR/n~ greater

than unity seem to be more desirable than fibers with

nR/nz N 0.995 provided that the value of nR/nz(> 1) is

chosen to minimize the modal dispersion. In addition, for

improving the mode dispersion characteristics it is impor-

tant that the fiber be operated at a frequency far from the

cutoff of any mode groups.

V, CONCLUSION

The mode dispersion characteristics of the truncated

parabolic-index fiber have been analyzed theoretically in

detail by using a variational method. The standard deviation

of the normalized group delay of the propagating modes has

been used to estimate the modal dispersion behavior of the

fiber. As a result, it has been shown that there exists an

optimum index distribution of the truncated parabolic-
index fiber at which the modal dispersion is minimized, and

a minimum output pulsewidth broadening can be achieved.
In this paper, it has been assumed that fibers are free from

losses. In a practical situation, however, the higher order

modes near cutoff may be expected to suffer much more

attenuation due to cladding and bending losses, Therefore,

provided that the losses are taken into account, the influence



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL MTT-263 NO. 2, FEBRUARY 1978 119

of these lmodes on the pulse broadening would be reduced to

some extent.

REFERENCES

[1] T. Uchida, M. Furukawa, I. Kltanoi K. Koizutm, and H, Matswnura,

‘CA ligk,t-focusing fiber guide,” IEEE J. Quantum Electvon., vol. QE-5,

p, 331, June 1969.

[2] D. Gloge. E. L. Chinnock, and K. Kolzumi, “Study of pulse distortion
m selfc,c fibers,” Electron. Lett., vol. 8, pp. 526–527, Oct. 1072,

[3] Y. Suematsu and K, Furuya, “Refractive index distribution and group

delay characteristics in multimode dlelectnc optical waveguldes,”
Trans. IECE Japan, vol. 57-C, pp. 289-296, Sept. 1974.

[4] M. Matsuhara, “Analysis of TEM modes m dielectric waveguides by a
variational method,” J. Opt. Sot. Amer., vol. 63, pp. 1514-1517, Dec.

1973.
[5] M. Geshlro, M. Ootaka, M. Matsuhara, and N. Kumagal, “’Analysis of

wave modes in slab waveguide with truncated parabolic index,” IEEE
J Quantam Electron. (C’orresp.), vol. QE-10, pp. W7-649, Sept. 1974.

[6] J. A. Stratton, Electromagnetic T/reory. New York: McGraw-Hill,
1941, p. 343.

[7] P.M. Morse and H. Feshbach, Methods of Theoretical Physics, New
York: McGraw-Hill, 1953, p. 1106.

Analysis of the Microstrip and the
Electrooptic Light Modulator

MASANORI KOBAYASHI

A bstruct—Greenk function for examples with an isotropic media

is obtained using the image-coefficient method. The method is based
on the boundary conditions and the reciprocity relation. Using this
Green’s function and solving directly the charge distribution on the

strip, the line capacitances per unit length of a microstrip and of an
electrooptiic light modulator are obtained. High accuracy of this
method is demonstrated by comparing the present results with the
results obf ained using the conformal mapping and with other data

appeared in the literature. The charge distributions are also il-
lustrated. (Df particular interest is the effective filling fraction of the

dielectric material, which depends mainly on the shape ratio and only

slightly on the relative dielectric constant. The effective filling

fractions :are tabulated for the microstrip with a homogeneous

dielectric substrate.

LIST OF SYMBOLS

&~ Permittivity of free space (vacuum).

c Permittivity tensor of anisotropic material.

6.:, 6; Relative dielectric constants of anisotropic

material in the directions of x-axis and

y-axis, respectively.

E% Relative dielectric constant of isotropic

material.

c

q
fJ

??1

Y

N

Capacitance per unit length of microstrip

or of electrooptic light modulator.

Capacitance per unit length of line without

dielectric.

Line charge.

Charge distribution on the conductor.

Number dividing the conductor.

Constant of 1, 2, or 3.

Truncated number of the infinite series in

Green’s function.
——
i * * - Jqxqy image coefficient

‘;z+~=
Electric flux per unit angle emitted from tlhe

source line charge q in the radial direction

with the angle 6 from the x-axis.

—— ct/Lxl(al = ~E*ly/8*lx ~2 ‘= 4E”2YI%

Intrinsic impedance of the free space

(vacuum).

c/Eo
I. INTRODUCTION

Effective relative dielectric constant.&ff = ~,~ T HE CALCULATION of the parameters of a micro-

strip line based on a TEM approximation is useful for

E:ff – 1
q. = ~~ Wheeler’s effective filling fraction.

the design of microwave integrated circuit structures

[1]-[8]. The parameters can be derived from the line capaci-

tance. The method in [11 is based on modified conformal. .
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mapping. The methods in [2], [3], [5]–[8] use Green’s func-
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